Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity.

نویسندگان

  • Yong-Su Jin
  • Haiying Ni
  • Jose M Laplaza
  • Thomas W Jeffries
چکیده

D-Xylulokinase (XK) is essential for the metabolism of D-xylose in yeasts. However, overexpression of genes for XK, such as the Pichia stipitis XYL3 gene and the Saccharomyces cerevisiae XKS gene, can inhibit growth of S. cerevisiae on xylose. We varied the copy number and promoter strength of XYL3 or XKS1 to see how XK activity can affect xylose metabolism in S. cerevisiae. The S. cerevisiae genetic background included single integrated copies of P. stipitis XYL1 and XYL2 driven by the S. cerevisiae TDH1 promoter. Multicopy and single-copy constructs with either XYL3 or XKS1, likewise under control of the TDH1 promoter, or with the native P. stipitis promoter were introduced into the recombinant S. cerevisiae. In vitro enzymatic activity of XK increased with copy number and promoter strength. Overexpression of XYL3 and XKS1 inhibited growth on xylose but did not affect growth on glucose even though XK activities were three times higher in glucose-grown cells. Growth inhibition increased and ethanol yields from xylose decreased with increasing XK activity. Uncontrolled XK expression in recombinant S. cerevisiae is inhibitory in a manner analogous to the substrate-accelerated cell death observed with an S. cerevisiae tps1 mutant during glucose metabolism. To bypass this effect, we transformed cells with a tunable expression vector containing XYL3 under the control of its native promoter into the FPL-YS1020 strain and screened the transformants for growth on, and ethanol production from, xylose. The selected transformant had approximately four copies of XYL3 per haploid genome and had moderate XK activity. It converted xylose into ethanol efficiently.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular cloning of XYL3 (D-xylulokinase) from Pichia stipitis and characterization of its physiological function.

XYL3, which encodes a D-xylulokinase (EC 2.7.1.17), was isolated from Pichia stipitis CBS 6054 genomic DNA by using primers designed against conserved motifs. Disruption of XYL3 eliminated D-xylulokinase activity, but D-ribulokinase activity was still present. Southern analysis of P. stipitis genomic DNA with XYL3 as a probe confirmed the disruption and did not reveal additional related genes. ...

متن کامل

Metabolic engineering for improved fermentation of pentoses by yeasts

The fermentation of xylose is essential for the bioconversion of lignocellulose to fuels and chemicals, but wild-type strains of Saccharomyces cerevisiae do not metabolize xylose, so researchers have engineered xylose metabolism in this yeast. Glucose transporters mediate xylose uptake, but no transporter specific for xylose has yet been identified. Over-expressing genes for aldose (xylose) red...

متن کامل

Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase.

The xylose-fermenting recombinant Saccharomyces cerevisiae and its improvement have been studied extensively. The redox balance between xylose reductase (XR) and xylitol dehydrogenase (XDH) is thought to be an important factor in effective xylose fermentation. Using protein engineering, we previously successfully reduced xylitol accumulation and improved ethanol production by reversing the depe...

متن کامل

Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose.

Xylose is one of the major fermentable sugars present in cellulosic biomass, second only to glucose. However, Saccharomyces spp., the best sugar-fermenting microorganisms, are not able to metabolize xylose. We developed recombinant plasmids that can transform Saccharomyces spp. into xylose-fermenting yeasts. These plasmids, designated pLNH31, -32, -33, and -34, are 2 microns-based high-copy-num...

متن کامل

Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response.

Native strains of Saccharomyces cerevisiae do not assimilate xylose. S. cerevisiae engineered for d-xylose utilization through the heterologous expression of genes for aldose reductase (XYL1), xylitol dehydrogenase (XYL2), and d-xylulokinase (XYL3 or XKS1) produce only limited amounts of ethanol in xylose medium. In recombinant S. cerevisiae expressing XYL1, XYL2, and XYL3, mRNA transcript leve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 69 1  شماره 

صفحات  -

تاریخ انتشار 2003